Structuralism and Meta-Mathematics

نویسنده

  • Simon Friederich
چکیده

The debate on structuralism in the philosophy of mathematics has brought into focus a question about the status of meta-mathematics. It has been raised by Stewart Shapiro in (Shapiro, 2005), where he compares the ongoing discussion on structuralism in category theory to the Frege-Hilbert controversy on axiomatic systems. Shapiro outlines an answer according to which meta-mathematics is understood in structural terms and one according to which it is not. He finds both options viable and does not seem to prefer one over the other. The present paper reconsiders the nature of the formulae and symbols meta-mathematics is about and finds that, contrary to Charles Parsons’ influential view, meta-mathematical objects are not “quasiconcrete”. It is argued that, consequently, structuralists should extend their account of mathematics to meta-mathematics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categories, Structures, and the Frege-hilbert Controversy: the Status of Meta-mathematics †

There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of metamathematics in an algebraic or structuralist ap...

متن کامل

Russell’s Absolutism vs.(?) Structuralism

Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And Dedekind’s “structuralist” views come in for criticism in the Principles. But, on reflection, Rus...

متن کامل

An Epistemic Structuralist Account

ii This thesis aims to explain the nature and justification of mathematical knowledge using an epistemic version of mathematical structuralism, that is a hybrid of Aristotelian structuralism and Hellman’s modal structuralism. Structuralism, the theory that mathematical entities are recurring structures or patterns, has become an increasingly prominent theory of mathematical ontology in the late...

متن کامل

How are Mathematical Objects Constituted? A Structuralist Answer

In my view, structuralism as presented by Shapiro (1991, 1997), Resnik (1991), and elsewhere offers the most plausible philosophy of mathematics: Mathematics is about structures, indeed it is the science of pure structures. Structures have no mysterious ontological status, and hence mathematics is not ontologically mysterious, either. Again, it is no mystery how we can acquire knowledge about s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010